3.248 \(\int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac {19 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {9 \sin (c+d x) \sqrt {\cos (c+d x)}}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

19/32*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-1/4*sin
(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(5/2)-9/16*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2766, 2978, 12, 2782, 205} \[ \frac {19 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {9 \sin (c+d x) \sqrt {\cos (c+d x)}}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{4 d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(5/2)),x]

[Out]

(19*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*
d) - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)) - (9*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/
(16*a*d*(a + a*Cos[c + d*x])^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2}} \, dx &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {\int \frac {\frac {7 a}{2}-a \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {9 \sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {19 a^2}{4 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {9 \sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {19 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {9 \sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac {19 \operatorname {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{16 a d}\\ &=\frac {19 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {9 \sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.28, size = 134, normalized size = 0.98 \[ -\frac {\tan \left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (\cos (c+d x) (9 \cos (c+d x)+13) \sqrt {2-2 \sec (c+d x)}-76 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right ) (-\sec (c+d x))}\right )\right )}{32 \sqrt {2} a^2 d \sqrt {\cos (c+d x)-1} \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(5/2)),x]

[Out]

-1/32*(Sec[(c + d*x)/2]^2*(-76*ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[(c + d*x)/2]^4 + Cos[c +
d*x]*(13 + 9*Cos[c + d*x])*Sqrt[2 - 2*Sec[c + d*x]])*Tan[(c + d*x)/2])/(Sqrt[2]*a^2*d*Sqrt[-1 + Cos[c + d*x]]*
Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 1.12, size = 180, normalized size = 1.31 \[ \frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (9 \, \cos \left (d x + c\right ) + 13\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/32*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a*co
s(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) - 2*sqrt(a*cos(d*
x + c) + a)*(9*cos(d*x + c) + 13)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c
)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 0.17, size = 245, normalized size = 1.79 \[ \frac {\sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (-1+\cos \left (d x +c \right )\right ) \left (19 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+38 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )-9 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {2}+19 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right )-4 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}+13 \cos \left (d x +c \right ) \sqrt {2}\right ) \sqrt {2}}{32 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}\, \sin \left (d x +c \right )^{3} a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(5/2),x)

[Out]

1/32/d*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))*(19*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin((-1+cos(d*x+c))/s
in(d*x+c))*cos(d*x+c)^2*sin(d*x+c)+38*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin
(d*x+c)*cos(d*x+c)-9*cos(d*x+c)^3*2^(1/2)+19*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin((-1+cos(d*x+c))/sin(d*x+
c))*sin(d*x+c)-4*cos(d*x+c)^2*2^(1/2)+13*cos(d*x+c)*2^(1/2))/(1+cos(d*x+c))/cos(d*x+c)^(1/2)/sin(d*x+c)^3*2^(1
/2)/a^3

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(5/2)),x)

[Out]

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Integral(1/((a*(cos(c + d*x) + 1))**(5/2)*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________